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Abstract—A dendrogram that visualizes a clustering hierarchy is often integrated with a reorderable matrix for pattern identification. 
The method is widely used in many research fields including biology, geography, statistics, and data mining. However, most 
dendrograms do not scale up well, particularly with respect to problems of graphical and cognitive information overload. This 
research proposes a strategy that links an overview dendrogram and a detail-view dendrogram, each integrated with a re-orderable 
matrix. The overview displays only a user-controlled, limited number of nodes that represent the “skeleton” of a hierarchy. The detail 
view displays the sub-tree represented by a selected meta-node in the overview. The research presented here focuses on 
constructing a concise overview dendrogram and its coordination with a detail view. The proposed method has the following 
benefits: dramatic alleviation of information overload, enhanced scalability and data abstraction quality on the dendrogram, and the 
support of data exploration at arbitrary levels of detail. The contribution of the paper includes a new metric to measure the 
“importance” of nodes in a dendrogram; the method to construct the concise overview dendrogram from the dynamically-identified, 
important nodes; and measure for evaluating the data abstraction quality for dendrograms. We evaluate and compare the proposed 
method to some related existing methods, and demonstrating how the proposed method can help users find interesting patterns 
through a case study on county-level U.S. cervical cancer mortality and demographic data. 

Index Terms—Dendrogram, reorderable matrix, compound graphs, data abstraction quality metrics, hierarchical clusters. 

 

1 INTRODUCTION 

A dendrogram is a form of binary tree that is typically used to 
visualize hierarchical relationships in data (e.g., hierarchical 
clustering results). A matrix is a two-dimensional graphic for 
displaying tabular, multidimensional data.  A reorderable matrix 
allows permutation of data items and/or dimensions to reveal 
patterns of relationships, main trends, and outliers [22, 25]. A 
dendrogram is often integrated with a reorderable matrix, referred 
to as a dendrogram-matrix view here. A dendrogram-matrix view 
exposes patterns by leveraging perspectives of both components. 
This method is effective in exploring multidimensional data, 
helping users to generate hypotheses, to raise interesting questions 
and to validate knowledge. The dendogram-matrix is widely used in 
many research fields including biology, geography, economics, 
epidemiology, statistics, pattern recognition, and data mining [2, 4, 
5, 12, 16, 23].  Nevertheless, standard dendrograms do not scale up 
well for large datasets (Figure 1, left). Large dendrograms pose 
both graphical rendering and human cognition problems. Occlusion 
of branches and leaf nodes obscures the most important features, 
and the resulting visual complexity quickly becomes overwhelming 
[15]. In addition, most traditional dendrograms provide limited 
support for presenting high quality contextual information to 
facilitate data exploration. The work described here aims to address 
these issues by focusing on the dendrogram component of the 
dendrogram-matrix. 

1.1 Requirements and benefit 

Large datasets require new dendrogram-matrix techniques that 
avoid information overload and enhance scalability in both visual 
and cognitive aspects by (1) simplifying the graphical display while 
maintaining essential information and (2) providing support for 
easy navigation and display of contextual information.  The 
strategies we employ to achieve this include; (1) avoiding occlusion 
in the display, (2) limiting the amount of information presented 
within any single dendrogram, (3) presenting context and focus 

concurrently, and (4) supporting interactive data exploration on the 
dendrogram-matrix views. 

1.2 Contributions 

The contribution of this research includes: (1) a new metric to 
detect skeleton in a dendrogram for constructing an abstracted, 
overview dendrogram, (2) a method and algorithm for dynamically 
constructing the overview dendrogram, (3) an enhanced measure to 
(emphasizing over and under abstraction) evaluate data abstraction 
quality for overview dendrograms, (4) a prototype of the linked 
dendrogram-matrix overview and detail view that meets the above-
mentioned requirements. 

1.3 Description of this research 

To meet the design requirements mentioned above, we have 
adopted a now standard overview+detail approach. Specifically, 
this research proposes a strategy that separates context and focus in 
dynamically-linked overview and detail-view dendrograms. Similar 
to the concept of a compound graph by Herman, et al [15], the 
overview is an abstracted representation of a hierarchical cluster; it 
reveals the main patterns and structures inherent in the hierarchy 
(Figure 1, right). The overview is composed of a small selection of 
meta-nodes [19]; each represents a sub-tree of data elements. The 
meta-nodes characterize the most important features of a hierarchy, 
thus serves as the ‘skeleton’ of a dendrogram. Users can see the 
sub-tree represented by a meta-node in a detail view.  

This research has focused on constructing a concise overview 
dendrogram. We adopted an overview method conceptually similar 
to the one for tree visualization that was proposed in [13]. 
Specifically, our approach measures a metric value for each node in 
the original dendrogram, then ranks and selects a user-specified 
number of nodes as meta-nodes, and finally constructs the overview 
based on the meta-nodes. The proposed overview allows dynamic 
adjustment on the levels of detail for the entire hierarchy. To 
achieve high quality visual abstraction of a dendrogram, we have 
developed a new metric that helps to reduce information loss, and 
to achieve a more balanced abstraction.  

The rest of the paper is organized as follows. Section 2 reviews 
related literature. Section 3 discusses the core topics of the research 
including: the problems, the proposed new metric to detect the 
skeleton, and the algorithms for constructing an overview 
dendrogram. Section 4 describes our software implementation. 
Section 5 evaluates the proposed method, and demonstrates its 
usefulness via a case study on U.S. cervical cancer analysis. Finally 
Section 6 summarizes the method, discusses the limitations, and 
outlines planned future development. 
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2 RELATED WORK 

Because our research focused on constructing a concise 
dendrogram overview, we have reviewed the related work in four 
categories: methods to reduce information overloading in 
dendrograms, methods for generating an overview graph, metrics 
to measure the node importance in an overview, and metrics to 
measure data abstraction quality. 

2.1 Occlusion reduction in dendrograms 

Traditional large dendrograms display an entire hierarchy in a 
single view, simply compressing all the intermediate and leaf 
nodes into the limited display space, as shown in Figure 1(left) and 
in  [16, 23]. It is, however, virtually impossible to display 
thousands of nodes without severe problems of node occlusion 
(also called clutter or overplotting) - nodes fitted too closely or on 
top of others [15]. Occlusion inhibits data exploration, pattern 
identification and query on individual nodes. The general methods 
for clutter reduction is described in [10]. Two strategies have been 
proposed for clutter reduction in dendrograms: focus + context, 
and overview + detail.  

The focus + context strategy merges detail and overview into a 
single combined view. It allows users to focus on a subset of 
information, while still accessing the context information (e.g., 
[20]).  However, the strategy usually guarantees visibility for foci; 
causing occlusion (thus information loss) in contextual areas. 
Designed to avoid occlusion, the overview + detail strategy [24] 
suggests displaying the overview first, and zooming into a detail on 
demand. The strategy has been adopted in many dendrogram-matrix 
views [9, 16, 23]. Nevertheless, in most of these methods, the 
dendrogram still displays the entire hierarchy in full detail, thus still 
exhibiting occlusion problems.  

The key problem with large single-view dendrograms, whether 
they employ a focus + context or overview + details strategy, 
remains the size (i.e., the number of nodes) of the view.  Data 
analysis becomes much easier when the view size is reduced [15].  
A solution for the problem is a strategy of linked overview + detail 
views, which separates context and focus into an overview and a 
detail view. Both overview and detail views are a simplified 
dendrogram with reduced occlusion, measured in terms of criteria 
by [10]. As a result, comprehension on both contextual and detailed 
information is made easy. The key issue for the strategy is to 
construct a concise overview. The related methods are reviewed 
next. 

2.2 Overview graph  

Compound graphs [21, 27] or clustered graphs[8] are strategies for 
providing an abstracted graph representation (i.e., an overview). A 
compound graph contracts sub-graphs into meta-nodes, and 
expands them on demand. Herman introduced a method [13, 14] to 
construct an overview graph he called a ‘skeleton’ – a small subset 
of meta-nodes that characterize the most important features of a 
graph. Extending this idea, Marshall et al. developed a method to 

automatically build the skeleton [19].  Such techniques, however, 
generally focused on graphs without considering practical data 
analysis issues. To support pattern identification in 
multidimensional data, researchers integrated a matrix view with 
graph overview [1], and particularly with a dendrogram [2-5, 12].  
This research has adopted the skeleton strategy, focusing on 
developing an overview dendrogram. A key issue for this strategy 
is to employ an appropriate metric for identifying the best meta-
nodes. 

2.3 Metric for identifying meta-nodes 

A metric for measuring nodes in a graph can be either count-based 
or distance-based. Basically, a count-based metric measures the 
leaf count of a node - the number of leaf nodes descending from in 
a node. An example is the Horton-Strahler number [17, 26] (called 
Strahler number henceforth). Generally, the larger the leaf count, 
the more complex the node is; thus meaning a larger Strahler 
number. Herman et al. [13] adopted the Strahler number to 
measures structural complexity of a tree, extract the “skeleton”, and 
construct an overview tree by displaying the nodes that have a 
metric value larger than the user-specified cut-off value. See [13, 
14, 19] for examples. 

A distance-based metric measures the data associated with a 
node. In dendrograms, a node represents a merging of two clusters. 
Therefore, the node’s metric value is typically the Euclidean 
distance (dissimilarity) between the two clusters of data. The metric 
value can also be similarity or data variance of clusters, depending 
on the clustering algorithm. In dendrograms, the similarity (thus a 
node’s metric value) is visually reflected by the graphic distance 
from the node to the root in a vertical or horizontal direction (see 
Figure 2), so that users can focus on graphics. When displaying a 
large volume of data, many dendrogram-matrix views implicitly 
adopt this metric by abstracting a group of the low level and leaf 
nodes into a single node. The Hierarchical Clustering Explorer 
(HCE) [23] explicitly adopted this metric by providing a horizontal 
bar to visually set the cut-off similarity value. The entire dataset is 
partitioned by the sub-clusters that have the metric value 
immediately below the cut-off value. Figure 2 shows an 
implementation of the cut-off bar technique. Both count-based 
metrics and distance-based metrics have limits, as illustrated in 
detail in section 3.2. We propose a new metric particularly for 
dendrograms. The metric measures node count and data distance, 
plus a node balance factor.  

2.4 Data abstraction quality metrics 

To evaluate data abstraction quality of an overview dendrogram, a 
square-error metric is usually adopted.  The general objective of 
data clustering  is to minimize within-cluster variation (commonly 
measured by the square-error), and thus to maximize the between-
cluster variation [18]. Ward [28] uses a variation of square-error to 
measure information loss due to data abstraction. Cui [7] also uses 
square-error in a different way to measure data abstraction quality. 
This research adopts the square-error metric, but also emphasizes 

 
Figure 1. Left: A traditional dendrogram displaying 3105 data items. Right: The proposed overview dendrogram abstracts the data with 12 
leaf nodes – total leaf count is 12. The overview allows users to dynamically adjust level of abstraction by specifying the total leaf count in 
the overview. The maximum leaf count can be increased via field A (currently it is 60). 
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another important metric – standard deviation of square error. The 
second metric is important for evaluating potential over or under 
abstraction for overview dendrograms.     

3 DISCUSSION OF THE PROPOSED METHOD 

In this section, we discuss: (1) the data for the illustration and case 
study; (2) the major problems of distance-based metrics and count-
based metrics that were used for constructing traditional overview 
dendrograms; (3) the proposed new metric; (4) the method and 
algorithm to construct the proposed overview dendrogram using 
the new metric. 

3.1 The data 

Examples in this paper use cervical cancer mortality data for the 
United States between 2000 and 2004 that are publically available 
from the National Cancer Institute. The data are aggregated into 
3,105 county and county-like enumeration units in the forty-eight 
contiguous states of the U.S., plus the District of Columbia. The 
mortality data are integrated with demographic data from the U.S. 
Bureau of the Census, and include the following 7 variables: 
Standardized Mortality Ratio (SMR), Median Household Income 
(Income), Percentage of Population Urbanized (P_URBAN), 
Percentage of Population with No Families Below Poverty 
(P_PNFBPOV), Percentage of Population with Families Below 
Poverty (P_PFBPOV), Percentage Unemployed (P_UNEMP), 
Percentage of Housing Units with No Vehicles Available 
(P_HUNVA). In the illustration cases discussed later, the 7 
variables will be represented as 7 matrix rows, in the same order as 
listed above. The dataset is referred to as the U.S. cervical cancer 
and demographic dataset.  

The Standardized Mortality Ratio (SMR) reflects a relative risk 
of mortality, and is widely used in epidemiology. SMR is expressed 
as the ratio of observed to expected deaths. In theory, an SMR of '1' 
suggests normal risk, lower than '1' suggests low-risk, and larger 
than '1' suggests high-risk. The SMR data are highly skewed, 
ranging in value from 0 to 37, with a large proportion of values less 
than 1. In our previous study [6], the SMR is categorized into five 
classes: 0-0.4, 0.41-0.8, 0.81-1.2, 1.21-1.6, 1.6-37. The five classes 
are encoded in a specially-designed divergent color scheme, and are 
interpreted as: low risk (blue), low-to-medium risk (light blue), 
normal risk (white), medium to high risk (light red), high risk (red).  

3.2 The problem 

One goal for the overview dendrogram introduced here is to 
achieve a minimum amount of information loss at a user-specified 
level of data abstraction. A second goal is to achieve balanced data 
abstraction quality across the meta-nodes in the overview, avoiding 
over-abstraction for some meta-nodes and under-abstraction for the 
others. Achieving these goals requires an appropriate metric for 
extracting the skeleton of a dendrogram. Below, we illustrate the 

problems of both count-based and distance-based metrics in 
achieving the goals, and emphasize the importance for balanced 
data abstraction. We use a subset of U.S. cervical cancer data that 
includes 421 counties from five contiguous states in the southeast 
(U.S.: Mississippi, Alabama, Georgia, South Carolina, and Florida). 
The data subset contains only a single variable - SMR.  

A dendrogram-matrix overview using a distance-based metric 
alone suffers from a large information loss and unbalanced 
abstraction because the metric does not measure the number of data 
items represented by a node. As illustrated in Figure 2, a cut-off 
line graphically specifies a metric value in terms of the graphic 
distance to root. The nodes having values immediately below the 
cut-off value are abstracted as a single leaf node in the overview. 
The leaf nodes represent 9 clusters (A, B, C, D, E, F, G, H). The 
metric does not consider data count of the clusters, thereby 
inappropriately considering tiny clusters F, G, H, I as equally 
important as large cluster B. Consequentially, the over-abstracted 
node B, which could be broken into smaller pieces, contains too 
many data items (+280); while under-abstracted nodes (e.g., F, G, 
H, I) contain too few data items (around 1-3 items), which could be 
abstracted as a single leaf node. In practice, under-abstracted nodes 
increase the number of meta-nodes (thus complexity) in the 
overview, without providing much useful information; and over-
abstracted node suffer large information loss. For example, the 
over-abstracted node B would represent 280 data items ranging in 
SMR from 0.2 to 2.0, covering all five classes. Because node B 
cannot be categorized in any of the five classes, information is lost 
for the 280 data items in the overview.  

An overview dendrogram-matrix using a count-based metric 
alone would also suffer from the unbalanced-abstraction problem. 
An illustration is provided in section 5. Overview with unbalanced-
abstraction generally suffers more overall information loss than a 
balanced overview.  Therefore, a better metric for constructing a 
dendrogram-matrix overview would be one that measures both 
distance (thus data variance) and node count, and maintains a more 
balanced abstraction, as discussed next. 

3.3 The metric 

This research presents a metric that measures a node’s importance 
in terms of three features: (1) leaf count (thus data elements) of a 
node, (2) node balance – the difference in leaf count between the 
node’s two children, and (3) information saved– the decrease in 
data variance if a node is selected as a meta-node, which is kept 
‘open’ to display its two children (as detailed in section 3.4). Put 
another way, a meta-node avoids an increase in data variance (thus 
information loss) that would otherwise be caused by ‘closing’ that 
node. We name the metric the CIB metric – denoting the three key 
features: count, information, and balance. The value of node K in a 
dendrogram is defined as M (K), as expressed below: 

ሻܭሺܯ ൌ ሺ ௟ܰ כ ௥ܰሻ כ  info݁ݒܽݏሺ݇ሻ              (1) 

 
Figure 2. A dendrogram-matrix view implements a cut-off bar to facilitate cluster selection based on the distance-based metric. The view 
visualizes county-level, U.S. Cervical Cancer mortality data in five states. The data are encoded in blue-white-red colours, indicating low, 
normal and high mortality risk, going from blue to red, respectively. The data is currently divided into 9 sub-clusters by the cut-off bar. 
Cluster B is over-abstracted, and cluster F, G, H, I are under-abstracted. Cluster A contains data items with extremely low risk. 
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where ௟ܰ is the leaf count of the left sub-node, ௥ܰ is the leaf count 
of the right sub-node. ሺ ௟ܰ כ ௥ܰሻ measures leaf count and node 
balance; infosave (k) denotes the information saved at node k. The 
greater the value of a node, the more likely it would be chosen as a 
meta-node. The metric is explained in detail below. 

Count-based metrics that measure leaf count of a node are 
common methods for measuring the complexity of the node in a 
tree, as already discussed in section 2.3. Generally, the larger the 
leaf count, the more complex the corresponding sub-tree. Adopting 
this idea, the proposed metric also measures a node’s complexity in 
terms of its leaf count, but in a slightly different way. In the metric, 
( ௟ܰ כ ௥ܰሻ produces a larger value given a larger leaf count ( ௟ܰ ൅

௥ܰሻ, and produces the maximum value when ௟ܰ is equal to ௥ܰ. 
Hence, ( ௟ܰ כ ௥ܰሻ measures both the leaf count and the node 
balance.  

Measuring the node balance is important. When determining 
meta-nodes, a more balanced node is preferred over a less balanced 
one. This is because a meta-node will be kept ‘open’ – displaying 
its two children, and thus visually emphasize the separation of two 
distinct clusters of data. This is particularly true when both are of 
considerable size; while an unbalanced meta-node could separate 
only a large cluster from a tiny cluster. As shown in Figure 3, it 
makes more sense to select balanced node B as a meta-node rather 
than unbalanced node A, since if A were a meta-node, then B 
would be “closed”, which would in-turn cause loss of the 
information on two distinct clusters: D, E. 

The proposed metric extends the way of distance-based metrics 
in measuring data variance. Data variance is usually measured in 
terms of thematic distance (e.g. Euclidean distance) in attribute 
space, or other more complex measurements such as a Nearest 
Neighbor Measure as proposed in [7]. Choosing an appropriate 
data-variance measurement is beyond the discussion of this paper. 
On the other hand, in a dendrogram, the height of an intermediate 
node – graphic distance to the bottom (see Figure 4) – visually 
expresses the thematic distance (or dissimilarity) between the two 
child clusters. To reduce dependency on the underlying clustering 
algorithms, we simply measure the graphic distances between a 
node and its two child nodes – to reflect the increase in data 
variance (thus information loss) due to the merging.  In the equation 
(1), infosave(k) can be considered as a  weighted, virtual distance 
between a node K and its two children, which is calculated below: 

 

ሻܭሺ݁ݒܽݏ݋݂݊݅ ൌ 
ሺௗ௜௦௧ሺ௞,௟ሻכே೗ሻା ሺௗ௜௦௧ሺ௞,௥ሻכேೝሻ

ሺே೗ାேೝሻ
      (2) 

 
,ሺ݇ݐݏ݅݀ ݈ሻ is the graphic distance along one dimension ( horizontal 
or vertical) from  node k  to its left child l , and  ݀݅ݐݏሺ݇,  ሻ is theݎ
distance from node k to its right child r, as shown in Figure 4. The 
distance is weighted by the percentage of a node’s leaf count to its 
parent’s leaf count – i.e., ௟ܰ/ሺ ௟ܰ ൅ ௥ܰሻ.   

Since it measures more features of dendrograms, the CIB metric 
can outperform count-based and distance-based metrics 
considerably when the hierarchical structure is “unbalanced” - 
consists of unbalanced nodes that have two direct sub-nodes with 
considerably different leaf count and/or data variance (e.g., 
unbalanced node A and balanced node B in Figure 3). Figure 7 is 
also an example of unbalanced structure. The CIB metric would 

achieve similar results as the other metrics when a hierarchical 
structure is very “balanced”. The claim is supported in section 5. 

3.4 Algorithms for constructing the overview   

In contrast to the traditional overview graph that ‘close’ a meta-
node by abstracting it as a leaf node; our dendrogram-matrix 
overview keeps a meta-node ‘open’ to display its two direct child 
nodes, while abstracting each child node as a leaf node if it is not a 
meta-node. This strategy allows a meta-node to visually reflect 
information saving and node balance that are measured by the CIB 
metric.  Accordingly, the data items contained in the cluster 
represented by the leaf node are aggregated as a mean vector, 
which is displayed as a matrix column.  

The overview allows users to specify the number of meta-nodes 
via a slider bar, which determines the total leaf count – the total 
number of leaf nodes displayed on the overview (under the root 
node)(Figure 1, right). Given a total leaf count, meta-nodes can be 
easily detected by following the four steps below: (1) measure the 
‘importance’ for each node in the original dendrogram, based on the 
CIB metric; (2) sort all the intermediate nodes by the metric values, 
put more important nodes in front of a list; (3) set the root node as 
the first one in the list, (4) select the most important P nodes in the 
list as the meta-nodes. 

Given the P meta-nodes, the abstraction algorithm for 
constructing the overview is described as below: (1) clone the 
original dendrogram; (2) sort the P meta-nodes based on their 
graphic distance to root; (3) starting from the meta-node with the 
largest graphic distance to root, traverse the cloned dendrogram 
from the bottom to the top; (4) if a meta-node is found, abstract any 
of the two children nodes as a leaf node if the children node is not a 
meta-node;(5) search through all the parents of the current meta-
node, to find the next meta-node; (6) go through steps from 2 to 6 
until the root node is reached. 

4 IMPLEMENTATION 

The proposed metric and matrix overview has been implemented in 
the visual inquiry toolkit (VIT) [4, 5], developed and implemented 
by Jin CHEN using the Java Swing library, and GeoVISTA Studio 
– an open source Java framework. The VIT implements several 
classic hierarchical clustering algorithms including average-link, 
single-link, complete link, and Ward’s method [18]. In addition, 
some spatially-constrained hierarchical clustering algorithms have 
been developed and implemented. VIT provides a graphic user 
interface for users to choose a subset of variables, and their weights, 
on which the clustering is based.  

To generate an overview, a user simply needs to specify the total 
leaf count by dragging a slider bar on the top (Figure 9). The 
maximum leaf count can also be specified.  Once generated, the 
overview presents the SSE and Std (SSE). The overview 
component is dynamically linked to the detail view component, so 
that if the user clicks on a leaf node in the overview, the detail view 
automatically zooms to display the corresponding sub-cluster 
represented by the leaf node. The detail view also highlights each of 

         
Figure 4. Node A is not balanced – B has much more leaf nodes 
than C. Node B is more balanced – D, E have similar leaf nodes 
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Figure 3. Node height and dist () - graphic distance 
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the sub-clusters with a green circle for the corresponding meta-node 
in the overview. 

The overview offers a visual cue via branch width – a wider 
branch contains more data items. The matrix headers also display 
the number of data items contained in each leaf node (Figure 6). 
The exploration strategy is to look at the overview first, adjust 
abstraction level, quickly identify more viable patterns, and then 
investigate the patterns in the detail view. The goal is to identify 
association among variables, as demonstrated in section 5.2.2.  

While rendering performance is not the focus of this research, 
our current implementation supports real-time interaction on a 
hierarchy with a total leaf count of 3000+. Our algorithms allow 
quick detection of meta-nodes and construction of the overview – it 
takes less than 1 second for the U.S. cervical cancer subset, and 1-2 
seconds for the full dataset, all experimented on a Dell M4400 
laptop. Our future work will optimize on the algorithms. 

5 EVALUATE THE OVERVIEW DENDROGRAM-MATRIX  

We evaluate the overview dendrogram-matrix in two ways. First, 
we quantitatively measure data abstraction quality on the overview, 
and compare the CIB metric with the count-based and distance-
based metrics. Second, using the U.S. cervical cancer mortality 
data, we qualitatively examine data abstraction performance. This 
includes a case study to demonstrate how the proposed 
dendrogram-matrix views facilitate finding interesting patterns in 
comparison with HCE. Finally we qualitatively evaluate the 
scalability of the proposed method. 

5.1 Quantitative evaluation on abstraction quality 

5.1.1 Quantitative evaluation design 

To quantitatively evaluate data abstraction quality for overview 
dendrograms, this research use both sum-square-error (SSE) and its 
standard deviation (Std (SSE)). Measuring SSE is a common 
evaluation method, as discussed in section 2.4.  The square-error of 
a cluster is the Euclidean distance between the cluster’s center and 
its data items. Here, the square-error is also referred to as leaf-node 
error, indicating the error of a leaf node that represents the cluster 
in the overview. A leaf node that represents only a single data item 
has the square-error of 0. The SSE is the sum of leaf node errors in 
the overview. A small SSE value indicates high abstraction quality, 
at a given total leaf count.  

Std (SSE) evaluates the variation of data abstraction quality 
among the leaf nodes in an overview. At a given level of 
abstraction, an extremely large leaf-node error indicates a leaf node 
has been over-abstracted, while a leaf-node error of 0 (or extremely 
small values) indicates under-abstraction. A small Std (SSE) 
indicates low occurrence of over or under abstraction. 

Our evaluation compared CIB with count-based and distance-
based metrics, focusing on their application in unbalanced 
hierarchical structure. The structure is a typical result from 
clustering highly skewed data, common in many domains. The 

structure can also be an artifact generated from particular clustering 
algorithms. Examples of such algorithms are a single-link clustering 
algorithm that can cause chain effects in the clusters, or a spatially-
constrained clustering algorithm that allows two clusters to merge 
only if the two regions they represent are geo-spatial neighbors. 
Average-link and Ward algorithms tend to produce more balanced 
structures. The evaluation used three datasets: the U.S. cervical 
cancer dataset, a skewed simulated dataset, a simulated dataset in 
relatively normal distribution, using the average-link algorithm by 
default, which does not favor a specific metric. 

5.1.2 Quantitative evaluation result 

Figure 5 shows the comparison of SSE between the CIB and 
distance-based metrics, using the U.S. cervical cancer sub dataset 
(421 counties). The result was obtained for a series of 13 
abstraction levels – with the total leaf count ranging from 3 to 15. 
The overview using CIB metric has considerably lower error than 
one using the distance-based metric, particularly at a high level of 
abstraction when the total leaf count is small. When the abstraction 
level is lower (e.g., 20 nodes to represent 421 data items), the error 
difference becomes small. In addition, the error decreases more 
smoothly for the proposed metric as the total leaf count is 
increased. This helps to avoid accidental information loss due to an 
inappropriate abstraction level chosen by users.  Figure 5 also 
shows that the Std (SSE) obtained by using the CIB metric is much 
lower than that by using the distance-based metric at the high level 
of abstraction, indicating the CIB metric can achieve a more 
balanced abstraction.  

We compared CIB with a count-based metric using the same 
dataset as above and a relatively-normally-distributed, simulated 
dataset. The two results are close due to the relatively balanced 
hierarchical structure. Then we applied a single-link algorithm to 
produce a more unbalanced structure. The CIB metric produced 
noticeably lower SSE and Std (SSE). In addition, we applied an 
average-link algorithm on the highly skewed simulated data that 
was generated using the Random function in Microsoft Excel. Most 
values for the resulting data ranged from 0 to 10, with a few from 
10 to 100. CIB metric achieves much lower SSE and Std (SSE) than 
the count-based metric. Figure 5 (right) shows this comparison on 
SSE. In summary, all these measures suggest higher abstraction 
quality for the CIB metric than the others. 

5.2 Qualitative evaluation on abstraction quality 

We first demonstrate the dendrogram-matrix overview and the 
corresponding detail view using the five-state subset of U.S. 
dataset, and compare the detail view with one using the distance-
based metric (Figure 2). Then, we compare the proposed method 
with HCE, using the full U.S. cervical cancer and demographic 
data. 

5.2.1 Comparison of metrics  

When analyzing the five-state subset, we set the total leaf count to 9 

 
Figure 5. Quantitative evaluation. Left and middle plots compare SSE and Std(SSE) between the CIB (blue) and distance-based (red 
line) metrics. The right plot compares SSE between the CIB (blue) and count-based (red line) metrics. The metric values were 
measured at a series of abstraction levels from the total leaf count of 3 to 20 in the overview.
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nodes in the overview (Figure 6, left). The 9 leaf nodes represent 9 
clusters (A, B, C, D, E, F, G, H, I) the detail view (Figure 6, right). 
By comparing Figure 2 with Figure 6, we found that clusters A, C, 
D, E in Figure 2 are the same as clusters A, F, G, H in Figure 6. 
However, the proposed method further partitions cluster B in Figure 
2  into clusters B, C, D, E, in Figure 6, therefore avoids over-
abstraction. On the other hand, the method combines clusters F, G, 
H, I in Figure 2 into cluster I in Figure 6, thereby avoiding under-
abstraction. By avoiding unbalanced abstraction, the method 
reduces information loss. The proposed overview has a SSE of 49.2 
and a standard deviation of leaf-node error of 3.4 at the abstraction 
level of 9 nodes (Figure 5). Both measures are much lower than 
those measured from the sub-clusters in Figure 2 (104.6, 29.3 
respectively). The benefit is reflected in real-life data analysis. For 
example, the four clusters (B,C,D,E) in Figure 6 represent data 
groups that correspond to the four classes of mortality risk (SMR): 
low-to-medium risk (light blue), normal risk (slight blue, white, and 
slight red), medium to high risk (light red), and high risk (red). The 
four clusters thus offer much more meaningful information than 
cluster B in Figure 2, which abstracts the same data items but 
provides little information on the mortality risk. Similarly, the 
cluster I in Figure 6 covers SMR from 5.8 to 11.1, which represents 
a cluster of counties with extremely high risk. It makes more sense 
to abstract the data into cluster I rather than the four clusters (F, G, 
H, I) in Figure 2. 

5.2.2 Comparison to HCE – a case study 

Next, we illustrate how our dendrogram-matrix views can help to 
identify interesting patterns. We compare our method to HCE, 
because it is well-known and publicly available. We use the full 
U.S. cervical cancer and demographic dataset containing 3105 data 
items and 7 variables. The data items are represented as columns; 
and the variables are represented as rows in the matrix, listed in the 
same order as section 3.1 (e.g., SMR is in the first row). The 
hierarchical structure is “unbalanced”. 

HCE compresses and displays the entire dataset in the display 
view (Figure 7). When the cut-off bar is set to partition the data into 
20 clusters, we find cluster A contains a large number of data items 
(probably over 2000) and has a large data variance. Such huge 
clusters are found at other abstraction levels (e.g., a partition of 46 
clusters). The clusters are obviously over-abstracted, and do not 
expose any useful patterns in that portion of the data, particularly as 
shown in the mortality ratio (SMR) row. On the other hand, clusters 
represented by E are very small, and hence under-abstracted. Severe 
occlusion is also seen across all the clusters. Furthermore, 
interactively exploring clusters is very difficult because users need 
to select any cluster as a whole to display it in the detail view. 
Cluster A contains too many data items to be fully displayed in the 
detail view. Even when we set the cut-off bar to show 105 clusters, 
huge clusters are still seen on the left and in the middle. In 
summary, HCE provides limited support for analysis of these 
highly skewed data that are common in many domains (e.g., public 
health and demography). 

Our dendrogram-matrix views can help identify associations of 
high mortality with potential co-variates. When the total leaf count 

is set to 40, the overview reveals several interesting patterns – e.g., 
pattern A and B (Figure 8, left). The columns in both patterns have 
the first row in red, and third row in blue. Pattern A suggests that an 
association between high mortality risk (i.e., red in first row) and 
low percentage of urbanization (i.e., blue in the third row) 
potentially existed in the counties of the clusters. To avoid 
ecological fallacy, we need to investigate the individual counties. 
We selected the 4 columns in the overview, and displayed the 4 
clusters (C, D, E, F) in the detail view. Figure 8 shows that the 
pattern persists in the detail view, providing further evidence for the 
association. In addition, pattern A suggests weak (or maybe no) 
association between mortality and affordability of health service in 
these counties; no obvious patterns are seen for income and 
unemployed rate variables, as indicated by inconsistent colors 
across the columns. As a result, a hypothesis can be generated that 
high mortality is more related to availability than affordability of 
health services in these counties. If the counties are adjacent, then 
the hypothesis suggests geographical disparity for diseases and risk 
factors. Identifying disparity is particularly valuable for analysis of 
a disease and its risk factors as emphasized by the National Cancer 
Institute [11]. To confirm the hypotheses, spatial data analysis (e.g., 
spatial clustering and statistics) must be employed; and data related 
to health services availability may need to be collected.  

The case study also demonstrated that, at different levels of 
abstraction, the proposed method achieves much more balanced 
abstraction than HCE – all the nodes represent clusters with size 
less than 200 data items; the size is quite manageable in the detail 
view. In contrast, with the cut-off bar technique, unmanageably 
large clusters (e.g., size of more than 1000 data items) are 
constantly found at various levels of abstraction.  

5.3  Qualitative Evaluation on scalability 

The proposed method can dramatically increase the scalability of 
the dendrogram-matrix view. The overview can easily display over 
100 leaf nodes, each taking 10-20 pixels in width ( as shown in 
Figure 9, top plot). The overview guarantees no occlusion, and 
presents a clear matrix view for pattern identification, and supports 
easy navigation through the hierarchy. The detail view can clearly 
display around 400-450 nodes on an ordinary 1900*1200 screen, 
with each node taking 4 pixels in width (as shown in Figure 9, 
bottom plot). The detail view not only avoids occlusion, but also 
offers the capacity to detect patterns, and query on any individual 
data item on the screen. Dynamically linked, the overview and 
detail view can, in theory, support exploring large datasets of 
around 40,000 data items, with context and focus concurrently 
displayed, and no occlusion. In practice, a high performance detail 
view to quickly zoom and render a sub dataset is essential to 
achieve scalability. High performance rendering is beyond the 
scope of this research, which focuses on constructing concise 
overview to avoid information overloading and occlusion. To 
summarize the evaluation, the proposed dendrogram-matrix method 
provides enhanced overall scalability, high quality of data 
abstraction in terms of information loss and balance, and avoids 
occlusion.  

 
Figure 6. Qualitative evaluation.  The dendrogram-matrix overview (left) and detail view (right) visualize the U.S. cervical cancer mortality 
for the five states. Equipped with the proposed metric, the overview divides the data into 9 clusters with much less within-cluster variance 
than that shown in Figure 2. The detail view shows no obvious under-abstraction (e.g. leaf node representing a single data item) or over-
abstraction (e.g., a cluster covering multiple colors). The 9 clusters in this figure reasonably represent various levels of mortality risk. 
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Figure 9. The dendrogram-matrix views display the U.S. cervical cancer and demographic data. The overview summarizes the data in a 
finer level of detail, in 105 nodes. The detail view displays over 400 data items, and highlights 188 counties belonged to the 8 selected 
clusters in the overview. The 188 counties were previously represented as the 4 clusters in the overview shown in Figure 8. 

 
 

 

 
Figure 7 U.S. cervical cancer and demographic data displayed by HCE. The first matrix row is the SMR variable. In the top plot, the cut-off 
bar sets a similarity level dividing the data into 20 clusters. Cluster A is obviously over-abstracted, and clusters denoted by E are under-
abstracted. In the 2 bottom plots, the cut-off bar divides the data into 46 and 105 clusters. To save space, fewer rows are displayed here. 
Over-abstraction is seen in many clusters on the left, and under-abstraction on the right side. Occlusion is observed in most clusters.   
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B C D

E

SMR

SMR

 
Figure 8.  U.S. cervical cancer and demographic data displayed by the proposed method. The overview (left plot) shows a pattern A 
including 4 columns. The 4 clusters all have the first row in red, indicating high mortality risk (SMR) in these counties. The clusters also 
have the third rows in blue, indicating very low percent of urbanization in the counties. The detail view (right plot) shows individual counties 
of the 4 clusters (C, D, E, F). Most counties of the clusters have high SMR (i.e., first row in red) and low urbanization (i.e., third row in blue).  
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6 CONCLUSION 

Traditional large dendrogram-matrix techniques suffer both visual 
rendering and human cognition problems that include (1)  
occlusion, which results when a large number of visual elements are 
displayed in a limited screen space, (2) poor viewability - i.e., many 
nodes and branches  are barely visible, (3) poor utility - i.e., nodes, 
braches and matrix cells offer few useful insights due to 
information overload and human perceptual capacity that can 
discern a limited number of nodes and edges at a time.  In addition 
to the well-known scalability issue for dendrograms, this research 
reports and illustrates unbalanced abstraction issues in overview 
dendrograms.  

In our work to address the issues mentioned above, we have 
proposed and developed an approach that is equipped with a 
dendrogram-matrix overview linked dynamically to a detail view 
and a new metric to measure importance of nodes. The proposed 
method provides: (1) enhanced scalability for easily exploring 
relatively large datasets, (2) elimination of occlusion with a 
relatively large dataset, (3) manageability of information for the 
overview and the detail view, (4) concurrent access to both context 
and focus, and (5) high quality of data abstraction in terms of 
information loss and balance.  

The proposed method has applications in many research fields 
as mentioned in the introduction. The method provides an enhanced 
way to analyze large multidimensional datasets. It helps to identify 
patterns, generate hypotheses, and pose new questions. A 
disadvantage of the method is that: users need to switch between 
the overview and detail views, costing increased cognition effort. 
Further research will focus on strategies to reduce the cognitive cost 
of using linked views. 
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